Data Analysis Solutions also commonly known as Analytics platforms or business intelligence (BI) platforms, offers a set of tools for businesses to engross, organize, determine, and analyze data to reveal actionable intuitions that helps to enhance decision-making and update business strategy. Some of these products need IT implementation to form the analytical environment, connect essential data sources, and help prepare the data for usage; others are intended to be mainly arranged and used by non-expert users, without the help of IT for deployment (known as self-service). Business organizations, data analysts, data scientists, or other business stakeholders use this software to make, model, and transform data to better know the day-to-day performance of the company and inform decision-making.

Though separate data preparation tools are available that support in the process of discovering, blending, merging, cleansing, and enriching data—so large datasets can be easily combined, consumed, and analyzed—data analysis solution must integrate these functionalities into their core offering.

Best Data Analysis Software in 2020

  1. Scoreboard
  2. Kissmetrics
  3. Zoho analytics
  4. Magellan
  5. MapR
  6. Compass
  7. Databricks
  8. Mammoth
  9. MemSQL
  10. ATLAS.ti

Market Overview

The worldwide Data Analysis Market is predicted to grow from $ 25.71 billion to $ 78.26 billion by 2021, at a compound annual growth rate (CAGR) of 24.9 %. Best Data Analysis software has rapidly gained power in the market and is deemed to be the fastest-growing business in the IT sector. Business organizations are in very much need of tools that update their business process by rapidly analyzing, optimizing, and managing the exponential growth in data. All these functionalities are included within single support which allows organizations to analyze the correct data at the correct time and helps to understand the behavior and changing taste of the customer and view the performance of each and every resource of the organization. Thus, the usage of these tools is universally seen across all the industry verticals. BFSI and retail sectors are capturing the maximum of the market, while healthcare and media & entertainment are quickly gaining traction in the market. Additionally, players are showing their distinguishing competencies by presenting specific solutions and applications to emphasize the need and demand of a particular department or process. This has ramped up the interest of organizations in capitalizing on this business optimizing tools.

The global data analysis solution market is segmented based on the segment and services, type of deployment, organization size, industry verticals catered, and regions. The analytics segments comprise BI platforms, CPM suites, advanced and predictive analytics, content analytics, and analytics application. The services are categorized as professional services and managed services. Moreover, the deployment type is segmented into on-premises and on- cloud. The organization size is categorized into small-medium businesses and large enterprises. Further, the data analytics market caters to industry verticals such as BFSI, healthcare, IT and telecom, energy and power, retail, manufacturing, education, government, media & entertainment, and others.

The robust reports, dashboards, and visualizations tools created using the best data analysis software can drill down data to a granular level, portray connections and trends between multiple datasets, and generate data visualizations that make the data easier to understand for non-expert stakeholders as well. Products that provide only visualization components are considered as data visualization software, which comprises products primarily intended to generate charts, graphs, and benchmark visualizations.

Few analytics platforms provide embedding functionality to place dashboards or other analytics competencies inside applications; these products are known as embedded analytics software. Products explicitly designed for ingesting and integrating big data collections are known as big data analytics tool. Other features of the data analysis tool can comprise natural language search functionality and augmented analytics. Natural language search means the ability to query data using instinctive language, commonly in the form of a question. Augmented analytics means the process of using machine learning for generating perspectives from the data and supporting non-expert users in working with and visualizing data, such as automated data preparation and determining hidden patterns in the data.

COMPETITIVE LEADERSHIP MAPPING TERMINOLOGY

The MicroQuadrant matrix provides detailed information about the best Data Analysis Software companies. It describes the conclusions and analysis of how well each market player performs within the predefined MicroQuadrant standards. The vendor evaluations are based on 2 broad categories,i.e. Product Maturity and Company Maturity. Each category carries diverse criteria, based on which the vendors have been assessed. The evaluation criteria considered under the Product Maturity include product offering (based on the industries that the vendors cater to and their service offerings), essential features, type of deployment, and support services. The evaluation criteria considered under the Company Maturity include the overall geographic presence, industry verticals catered, partner ecosystem, and inorganic strategies like mergers & acquisitions.

VISIONARY LEADERS

Visionary Leaders have a robust portfolio of products and services to their clients. The products and services of these companies are highly accessible and can be customized as per the requirements of the clients. These companies are known to be investing significantly in R&D to introduce innovations in the Software. Moreover, these companies have also undertaken various organic and inorganic strategies to achieve constant and progressive growth in the Data Analysis solution market.

DYNAMIC DIFFERENTIATORS

Dynamic Differentiators have a substantial network of channel partners and resellers to expand the deployment of their solutions across a multitude of industry verticals. These vendors have been constantly creating positive revenue growth in the best Data Analysis Software market and their market position has emerged by their organic and inorganic undertakings.

INNOVATORS

Innovators in the Data Analysis solutions offer innovative solutions and they also have an extensive range of product offerings. The innovators have been leading in deploying their solutions for niche and custom software requirements of the clients.

EMERGING COMPANIES

The emerging players are focused on delivering highly niche and customized mind mapping solutions and services to their clients. These vendors plan new ways of working to drive business results in the market.

What is the importance of Data Analysis Tool?

Best Data Analysis Software allows businesses to enhance visibility into their data via data incorporation, cleaning, combination, enhancement, detection, and more. These tools are effective solutions that sometimes need IT and data science skills to access and understand company data via custom queries. The data analysis tool offers a thorough look into a company’s data by extracting from both structured as well as unstructured data sources via a sequence of comprehensive queries. Business users also benefit from the data analysis with adjustable dashboards and can drill into specific data points and trends.

The initial step in selecting a data analytics tool is determining what issues the user needs the product to solve. If a business requires a tool to create intricate models of data metrics, then the most appropriate solution would be a data analysis tool as compared to data visualization software, which doesn’t provide the same integration and querying competences as a data analysis tool. The potential for the software is endless, but once the user emphasizes the variety of business issues they hope to address, it becomes simpler to decide which tool is right to use. Whatever the use may be, from requiring a tool to help forecast financials or to help examine through unstructured big datasets to demonstrate growth, the user wants to narrow it down before buying. Improving the focus of the data analytics tool also helps encourage user acceptance by proving its worth to employees.

What are the Key Benefits of Data Analysis Solutions?

  • The software helps you to understand the present condition of operation from numerous computable angles
  • With data analysis tool you can identify and manage departmental problems on the basis of data findings
  • It enables you to improve develop communication amongst executives, workforces, and customers in a data-driven fashion
  • The best data analysis software allows you to connect and transfer appropriate data by integrating to other intelligence solutions and data sources

Why Use Data Analysis Tools?

There are numerous complications that software can resolve for organizations across almost every division along with sales, marketing, and product management teams. These solutions may need a data specialist, such as a data analyst, to initially create datasets prior to handing them over to the company. Once the data is in a more understandable form, it can be used to enhance transparency and inform strategy. But, with self-service competences, most tools on the market permit business users to acquire admission to data visualizations and data analysis without an IT expert or data support.

Two of the major business problems solved by data analysis tools are the capability to create one integrated source for entire company data that can be cross-referenced and correctly managed (also referred to as a business cloud) and the capability to then take that data and use it to enhance business success. Both of these features are vital and core to the proper functioning of the best data analysis software. Without strong data integration and data management, analysis won’t succeed at best and be incorrect at worst and without the capability to derive deep understandings from data.

Develop a single source of truth - Irrespective of company size, data is difficult to manage. Among all the diverse subdivisions, tools, and channels, corporations instantly accumulate large amounts of data that is housed separately, mostly with poor or little organization. Data analytics tools use connectors to bring that entire data collected in a single place. A company’s data, right from marketing analytics to financial accounts or customer response, can all be gathered in dashboards through connectors—APIs that data analysis tool vendors create through partnerships among their products and other software products across groupings.

After these connections are recognized, users start to link the dots amongst all of the data that can probably impact a company’s KPIs. Then, they can offer other investors with the capacity to access reports, assess data, and share documents on the basis of their queries. Without the best data analysis software, companies would have to collect all of their data manually and try to draw their own inferences and contacts, which can be a challenging process.

Turn data into actionable information - It becomes useless if a company collects huge amounts of data and lets it sit untouched. The data analysis tool allows analysts to deep dive into a company’s data to distribute information to the people and teams that use it to make forecasts, strategies, and actionable understandings. The reports and dashboards developed using software drill down data to a granular level, portray connections and trends between multiple datasets, and generate elaborate data visualizations that make the data easier to understand for the non-expert persons as well.

As analytics platform pulls in a company’s data from different sources, all of the functional areas in an organization line up to develop unified strategies, set objectives, and view the organization’s performance. Visibility into company-wide data enables a company to make timely, business decisions that are consistent and possibly transformative. This confirms that resources are allocated properly, and impact is maximized.

Who Uses best Data Analysis Software?

Data Analysis tool sometimes needs complete ground work by engineers or data scientists. Ordinary users, even analysts, and managers, sometimes cannot manipulate the data to appropriately find what they require to address their business issues. It is crucial to think about the complication of data that a business has, also the kinds of data models that the business needs to create.

Business analytics that is produced by analytics tools are very valuable for organization-wide departments. Users can inspect big data, real-time data, and unarranged data and fix parts for enhancement and other prominent trends. Interactive dashboards permit users to easily navigate via different metrics and share precise analytics with others in the organization to support in their decision making procedure. Generally, team leaders, supervisors, and the executive team can benefit to the fullest from the data discovery made likely with BI tools.

Data analysts and data scientists - These users are usually the power users of analytics tools, making complex queries inside the software to collect a better understanding of critical info. These users may also be tasked with creating self-service dashboards to share with rest of the teams. In smaller businesses, these users are most likely assigned with tasks to provide all data requests and working thoroughly with the other sections like sales, marketing, and operations teams to help offer understandings and enhance processes.

Sales teams - Sales groups typically use both self-service analytics tools as well as embedded analytics solutions to get insights into possible accounts, sales performance, and pipeline estimating, amongst many other use cases. Usually, sales operations executives or sales data specialists are the sales team personnel that make use of analytics on a routine basis. But these tools are very valuable for both sales managers as well as representatives. Sales Managers can monitor the performance of each team member and keep a clear picture of the possible pipeline. Moreover, sales teams can use data visualization tools to track previous tasks and quotas to give the entire company visibility into top sales numbers. Eventually, using the best data analysis software in a sales team can help business organizations to improve their sales processes and influence revenue.

Marketing teams - Marketing teams generally run different types of campaigns, comprising email marketing, digital ads, or even old-style advertising programs. The data analysis solutions permits marketing teams to monitor and record the performance of those programs in one central location. With data visualization, for instance, marketing teams can track campaigns in real-time; by computing the performance of each effort, teams can plan for upcoming campaigns and estimate how much revenue they can set aside to said efforts. Data analysis tool enables analysts to dive deeper into marketing initiatives by classifying customers based on a diversity of demographics, thus offering an understanding of which campaigns reverberate with varying segments of their customer base. This helps marketing teams to develop campaigns and exact products for preferred market segments. Similar to sales use cases, marketing teams can also utilize the best data analysis software to help progress the bottom line and deliver better transparency and visibility into the whole performance.

Finance teams - Finance teams use data analysis solution to get vision and understanding into the aspects that influence an organization's bottom line. Integrating financial data with sales, marketing, and other operations it helps secretarial and funding teams to gain meaningful insights that may not have been exposed through the use of old-style tools. Furthermore, they decide the "right and wrong" places to invest money. For example, if a specific ad campaign was the cause of a revenue spike, a company may consider that money well invested. If a particular product is making less profit as compared with others based on the effort of the sales team, then finance groups can notify their sales managers and correct accordingly. Data analytics tools also offer critical insights into how all the other business aspects impact profit and loss.

Operations and supply chain teams - Analytics solutions generally use a company's ERP system as a data source. These applications can monitor the entire thing from accounting to supply chain and circulation; by feeding supply chain data into data analysis tools, supply chain managers can enhance a number of practices to save time and resources. For example, businesses can work on improving inventory to confirm that they are producing according to the expectations. These tools also help in distribution paths and guarantee timely SLAs. Furthermore, data visualization software helps warehouse professionals to track their routine tasks to guarantee all operations are running effortlessly. All of these improvisations help businesses to remain on track and achieve better company-wide goals.

What are the different types of best Data Analysis Software?

Several types of data analytics tools share overlying functionality, while concurrently outfitting to diverse users or providing exclusive services.

Self-service data analysis - Self-service analytics tools don’t need coding knowledge, so business end users can take advantage of them for data related activities. These solutions typically offer a drag-and-drop feature which helps in creating dashboards, they also offer prebuilt templates for querying data, and infrequently, natural language querying for data finding. Businesses use this kind of software to build interactive dashboards for discovering critical understandings. This helps business users and other non-data team members to make better decisions based on appropriate business data.

Embedded data analysis - Embedded business intelligence solutions can integrate exclusive analytics functionality inside other business applications. Organizations may select an embedded product to recommend user adoption; by integrating the analytics inside frequently used software, companies enable their employees to take advantage of available data. These solutions also offer self-service capability so average business end-users get profited from data for improved decision making.

What are the key features of best Data Analysis Software?

Data Analytics platforms are of great help to any business with a need for appropriate data visualization of high-level analytics. Here are some important features within analytics tools that can help users make the most of them.

1. Integrations – Best Data Analysis software function as designed with an important assortment of software integrations. The data mining achieved within these tools depends on deep, precise information and big data scrapped from multiple locations. These comprise business data warehouse solution, sales platforms like CRM, website monitoring solution, and other platforms including some data suitable to business performance. Analytics platforms gather precise fields of data from external software and interpret this information as required for the numerous results or predictive analytics a business considers worthwhile.

When considering the best data analysis software, it is vital to research the integrations provided with a product and choose which constituents of the business software stack are accounted for. If current software can’t integrate with a preferred data analysis tool, users have to choose how important that data would be to the business’ analytics creativity. Users may require considering a substitute solution or a dissimilar analytics tool if a vital integration is missing. It is always helpful to reach out to an individual vendor with questions about any integrations.

2. Data preparation - Even though unconnected data preparation solutions are available that help in the process of determining, blending, uniting, cleaning, and enhancing data—so vast datasets can be effortlessly integrated, consumed, and assessed data analysis tool should integrate these functionalities into their essential offering. Specifically, analytics tools must back data blending and data modelling, offering the end-user the ability to merge data across various databases and other data sources and enabling them to build better data models of this data. This is an important phase in making meaning out of the turmoil, via the amalgamation of data from numerous sources.

3. Data management - After the data is correctly integrated, the data must be handled properly. This comprises data access to authorized users, for instance. However, some companies choose a standalone data management solution, as a data warehouse, analytics platforms should provide some level of data management by definition.

4. Definable business metrics – Business organizations have their own kind of success, and along with that, dissimilar data analytics that is appropriate to measure their performance. While planning a data mining program with the best data analysis software, users program the tool to capture and establish the most important analytics from any data sources that are available (e.g., data warehouses). Users can also recognize the relations among different tables, create data models, blend data from different sources, and then label these subsequent analytics based on the success metric they are tracing. Few instances of valuable analytics can comprise the average time customer’s use in a store and lifetime customer value.

Users may reach out to BI consulting partners to help choose the most suitable analytics and data to capture in relation to their company’s complete success. After an accurate consultation, these consultants may help with setting up or selecting BI tools. Many agencies can help businesses with the entire BI process, right from entire data analysis to the shaping of processes or protocols associated with data collection. For users who have never done data analysis before or those keen to enhance their businesses’ reporting, a association with these consultants can prove to be very helpful.

5. Customizable dashboards and reports - Multi-layered, live dashboards are an important feature of tools in this category. Users can program their analytics software to show whichever metrics they would like and build several dashboards that show analytics related to exact teams or initiatives. Users can pick and choose their preferred metrics from predictive analytics of website visitors to conversion rates over a specified period of time to feature in dashboards and create as many dashboards as necessary. Admins can regulate the consents of different dashboards, so they are easily accessible by authorized users in the company who need them the most. Users can also choose to share few dashboards on office monitors or take screenshots of dashboards to save and share as required. Few products in this category may permit users to explore dashboards on their mobile devices as well.

Responding to a single business query in these platforms and separating a specific data point associated with the question, is recognized as ad-hoc reporting. The IT team can help allocate users across the company and provide them with ad-hoc reporting capabilities so they can make the most of this technology without unceasing support. Users can also get metrics from the past with in-memory dispensation, which processes data from kept databases. This is valuable for comparative analysis and outlining trends over a period of time.

6. Data querying – Apart from dashboards and reports, users like data analysts may need to perform more thorough assessments on the data via queries. Based on the platform, this can be done in a natural, informal manner or via query such as like SQL.

Additional Features

Even though the above-mentioned features are core and vital to the very definition of best data analysis software, there are few distinctive features, mentioned below, which offer progressive functionality to the end-user.

1. Root cause analysis – Many companies produce huge amounts of data from different sources. But it can be tough to track data flow and to recognize when there are outliers in the data and when trends are happening across even a few data sources. Similarly, some platforms provide the user with a detailed view of their data and rationally alert them to variations in real-time. Once warned, they can dive and drill down, to evaluate the condition and resolve it.

2. Predictive analytics - Though there is a market of tools that emphasize exclusively on predictive analytics, best data analysis software have solutions for applying predictive models to data. However, they vary in terms of the complexity of this predictive analysis, such as the kinds and assortment of models users can arrange.

What are the current trends in Data Analysis Tools space?

With analytics platforms, many users across a business can effortlessly discover, access, and assess the data. Moreover, artificial intelligence (AI) tools like natural language processing (NLP) software support in probing through and for data easier and more powerful, providing more accurate results.

1. Conversational interface - Earlier, to query data in an analytics solution, users required to master a query language like SQL. With the growth of conversational interfaces, users reveal the data and understandings they are looking for using instinctive language. Instinctive methods of querying data mean allowing a bigger user base to access and make meaning of company data.

2. Augmented analytics - AI is rapidly emerging as a great capability of analytics solutions across the entire data journey, from ingestion to insights. From AI-powered data groundwork to smart understandings, in which the platform proposes visualizations to the end-user, the analytics tool is instantly becoming much more influential. End users can realize hidden insights using machine learning that lets them make sense of data and help them understand what they are seeing.

What are the challenges faced in Data Analysis Tools?

1. Problems with configuration - Analytics tools may have an extremely technical deployment procedure, which may need IT or developmental know-how. While attempting to instrument one of these tools without an interior data scientist or IT professional, users may scuffle with getting the technology to function, uniting it with the suitable solutions, and generating queries for data collection. This could cause a substantial damage of resources and an incapability to use the tool as intended. Users can reach out to BI consultants for support with setting up a program or, in some cases, for managing the entirety of BI reporting.

2. Unfinished integrations - Incomplete integration with current software solutions becomes perplexing to get an all-inclusive view of a business’s operating performance. Likewise, if an integration sees a communication error or other concern during a data query, it causes an incorrect or partial reading. Users should make a point to look at these links and any possible performance problems throughout their software stack to confirm that correct, comprehensive, and informed data is being processed and showed on dashboards.

3. Risk of data security - Businesses must take into account security options to guarantee that only the sanctioned users see the precise data, to ensure severe data security. Effective analytics solutions should deliver security choices that allow managers to allocate authorized users diverse levels of access to the platform, on the base of their security authorization or level of position.

4. Over dependency on analytics - Concentrating and depending too much on data and analytics can also be perplexing. Data-driven decisions are important to a business’ success, but data-only decisions overlook the various issues from within and without the organization. While successful businesses merge severe analytics with subjective storytelling and considerate conversations around the success of the business and its components.

Best Data Analysis Software

Comparing 37 vendors in Data Analysis Software across 84 criteria.
All vendors(30)

KPI dashboards can be created by users using various analytics tools like graphs, charts, spreadsheets, and many other metrics. Being able to create unlimited scorecards internally and extreme customization options available are really the attractive features of the software. 

Read less Read more
KISSMETRICS is an advanced data analysis software that provides a powerful set of features to help marketers make data-driven decisions. Key features of KISSMETRICS include a robust multichannel tracking system, a visual data analysis suite, funnel analysis, lifetime value analysis, testing and optimization, and automated data slicing, among others. KISSMETRICS has a few major USPs compared to other solutions: (1) KISSMETRICS goes beyond traditional marketing analytics, providing insights and data-driven recommendations that drive better customer acquisition and retention; (2) KISSMETRICS provides insights across multiple channels (Web, Mobile, Social, Email), enabling users to gain a true 360-degree view of their customer’s behavior; (3) KISSMETRICS has powerful data analysis capabilities which enable segmentation, trend analysis, and predictive modeling; (4) KISSMETRICS streamlines analytics and marketing optimization with its automated testing and optimization suite.
Read less Read more

Zoho analytics data analysis software is a network that puts together AI and Analytics to deliver companies smart and tailored sales and marketing solutions. The intuitive AI and interface help users obtain measured insights into their clients and predictive analytics help produce detailed sales and marketing data.

Read less Read more

Magellan data analysis software is considered to its mission to delight its users by exceeding their expectations, aiming for the highest customer satisfaction and retention. It contributes to the quality of life by enabling users to make the world a safer and healthier place. It promises to create continuous, sustainable shareholder value and to be the employer of choice in the industry. It commits to delivering quality service and putting the success of its users first. It constantly improves its offerings and empowers its users and partners to achieve their research and business goals. It commits to focus on detail like no other, consistently delivering quality engineering, flexibility, and reliability. It strives to meet the highest standards in every market it serves.

Read less Read more
2.6

MapR Data Analysis Software works to collect and synchronize data from various sources globally and helps businesses access the data easily. It comes with an additional feature of cloud storage that helps businesses sync their data in the cloud and prevent it from any cyber disasters. The quick access to data ensures higher productivity, increases quality, and yield by leveraging data at the edge. 

Read less Read more
2.5

Compass Data Analysis Software software helps to measure and improve trade effectiveness of trade promotions with a combination of AI powers tools to predict and analyze data accurately. These aspects serve as key attractions to the software. 

Read less Read more

Databricks is a cloud-based source for collaborative data science and large scale data engineering. It helps organizations in making all their data ready for analytics, empowering data science and data-driven decisions across the organization, and rapidly adopting machine learning to outpace the competition. It helps the organizations innovate faster and tackle challenges easily through rapid drug discovery, improvement in energy efficiency, and protecting the financial markets. 

Read less Read more
2.3

Mammoth data analysis software gives liberty to perform numerable tasks with the help of a virtual interface so that users with no coding knowledge can easily work on this software. It follows a simple workflow and keeps a record of each and every modification made, thus making it easier for the users to keep track of their work and also make several attempts at shaping their data into a useful piece of information. It also provides a large storage space under a single platform to avoid missing data.

Read less Read more
1.9
MemSQL Data Analysis Software is a high performance, an in-memory database that joins the scalability of distributed systems. It processes streams and analyses a large chunk of the database to study changing databases. It analyses changing datasets by ingesting streams, processing transactions performing analytics in a single database. It possesses an elaborate security system that includes SSL encryption across MemSQL nodes and applications in a cluster for its distributed database platform.
Read less Read more

The USPs of ATLAS.ti Data Analysis Software include its support for major text, graphic and audio formats. It also supports the handling of large data sets and provides structured visualization in a semantically meaningful way. It is useful in a wide variety of fields like anthropology, economics, criminology, medicine, etc. 

Read less Read more

Bouquet Data Analysis Software is easy to use for both simple look up’s as well as complex analysis, supports search and filtering across many values, and also helps to manage user access rights to data. These varied uses of the software attract attention from the users more and more. 

Read less Read more
A comparison function, with background controls, which helps you to simultaneously pick several objects for view and to switch easily between comparisons.Explorer, backed by Steps, Funnels, Engagement Analyses, Customer Paths, and Customer Parts, with each returned result centred on the most complex queries–in seconds.
Read less Read more
The software accelerates the performance of analytics, audit and share information on dashboards and more. The software is simple and easy to use and the key attraction remains to be able to manage all the financial data analytics at a single platform with more efficiency and security
Read less Read more

Informer Data Analysis Software by Entrinsik promises to deliver next-generation analytics software to cater to specific business needs. Its features come loaded with the assurance of lightning-fast delivery without any slacking from the product. It is a customer-driven organization fueled by customer feedback and believes that change is the only constant in this world. It emphasizes specifically, on the ease of use, modern technology, and high level of customer engagement. Its latest features make it one of the revered data analysis software choices for the business. 

Read less Read more

The software works to analyze customer engagement through various channels and generates insights for the same. It aids the marketers in highly targeted customer segmentation and aids small and large businesses alike. The service aids in data-driven marketing by using advanced analytics that studies customer behavior and keeps the marketer updated regarding the current trends in the market space.

Read less Read more

Qubole data analysis software provides computer scientists, system developers, data analysts, and managers with an out-of-the-box workbench and notebook. It supports open-source platforms used for all application user styles including Apache Spark, Presto, Hive / Hadoop, TensorFlow, Airflow, and others. It offers faster access for Analytics and Machine Learning to petabytes of safe, accurate, and trustworthy data sets of structured and unstructured data.

Read less Read more
The Sawmill Data Analysis Software offers a wide range of log processing solutions. Accessible with updated data which makes it easier. From a Laptop to a client cloud it can be installed anywhere. Sawmill pricing is in line with the leading competitors.
Read less Read more

Stata data analysis software is considered to be the perfect solution package for data science inclusive of analysis, modeling, statistics, data management, and visualization. It is a fast and powerful statistical package designed for researchers of all disciplines with tools and techniques put at the users’ fingertips. It is deemed more powerful than basic data analysis software and user-friendly that provides quality graphs with a professional finish. It is easy to use, automate, extend and to grow with. It helps users to master data with the help of a broad suite of statistical features with automated reporting and python integration. Its extensive features commit maximum customer satisfaction.

Read less Read more

Tonic is considered to be an all-in-one platform for masking, subsetting, scaling, and simulating data across tables without coding. It preserves the constraints, statistical correlations, distributions, and interdependencies that make the users’ data unique by using pre-trained models and feature extraction. It unlocks data to accelerate growth. It promises to anonymize user data to diagnose issues effectively without breaching user privacy. It is a tool for masking data and elevating communication. It mitigates risks and minimizes data breaches and by streamlining data de-identification, it commits to safeguarding data access.

Read less Read more

The use of intrinsic designs and computational techniques makes this software one of its kind. It is used in various fields of technical computing and thus includes thousands of features and functions that broaden the spectrum of the software. It uses simple language which makes it comprehensible to its users. It can easily be accessed online on any device which ensures the reachability of the software.

Read less Read more

Workbench Data Analysis Software demands no prior knowledge of the coding world and is designed so to benefit every individual. It is capable of performing multiple queries without any lag and facilitates smooth transmission of data throughout. It helps in gaining rich insights into the database and produce efficient models to increase the credibility of the same. With easy export and import of data, it becomes feasible to establish a collaboration between different teams and reduce communication gaps.

Read less Read more

The unique selling proposition of YouGov data analysis software lies in the simple structure of its software. The software does not necessitate the need to know standard jargon to perform analytical functions. The workspace is well organized and can easily be customized to suit the requirements and interests of the user. The feature of alerts and notifications keeps the user well informed of the different activities and data trends and thus helps in making informed decisions. 

Read less Read more
Data Analysis Software Related Articles
VIEW ALL ARTICLES